原著論文

屋内ラドンとラドン短寿命娘核種濃度の シミュレーションプログラムの開発と応用

横山真太郎', 吉岡誠記', 増田正夫², 角田直人³, 青木徹4, 内見裕聡5, 下道国6

[受付 2002.7.25] [受理 2002.11.12]

Development and Application of Computer Programs for Predicting Concentrations of Indoor Radon and Its Daughters

Shintaro YOKOYAMA¹, Masaki YOSHIOKA¹, Masao MASUDA², Naoto KAKUTA³, Tohru AOKI⁴, Hiroaki UCHIMI⁵ and Michikuni SHIMO⁶

[Received Jul 25, 2002] [Accepted Nov 12, 2002]

要 旨

北海道におけるわれわれの屋内現場測定値により、わが国の高気密化住宅では条件によってはラドンならびにラドン短寿命娘核種の放射能濃度が無視できないことがわかり、本報では、あらかじめ計画時にラドンとラドン娘核種濃度の予測や換気設備の最適運転管理に有用なコンピュータプログラムを開発し、地下室を対象とした実測値とシミュレーション値を比較検討しその有効性を確かめた。さらに、相互換気量が確認されている三室モデルでの濃度変化をシミュレーションした。

Abstract

In our measurement survey, we found that the concentrations of indoor radon and its daughters were higher in energy-efficient houses in Japan. Therefore, we have developed a computer program predicts, evaluates and controls concentrations of indoor radon and its daughters. A comparison of measured and simulated results in underground spaces shows the validity of the computer program. By using the computer program concentrations of indoor radon and its daughters.

Key words: indoor radon, radon daughters, radioactive concentration, simulation

1.はじめに

近年,わが国特に北海道では地球環境問題が要請す る省エネルギーを考慮した高気密建物が増えてきた。 土壌やコンクリートから発生するラドンならびにラド ン短寿命娘核種が高気密建物で蓄積することによって, その建物の居住者あるいは屋内活動者に肺ガンをもた らす危険性が懸念される。そこで,既報¹¹にてラドン とラドン短寿命娘核種の屋内現場測定調査を行ったと ころ,北海道のブロック造個別住宅や地下室では EPA の基準値 148 Bq/m³や ASHRAE, WHO の基準値 100 Bq/m^{3 2)}をはるかにこえる 230~240 Bq/m³レベル に達していた。これまで、わが国ではラドン問題が無 視されていたきらいがあるが、近年の高気密化住宅で はラドンならびに短寿命娘核種を室内空気質の測定項 目に入れるべきことを示していると考えられた。

本報では,あらかじめ計画時にラドンとラドン娘核 種濃度の予測や換気設備の最適運転管理に有用なコン ピュータプログラムを開発し,地下室を対象とした実 測値とシミュレーション値を比較検討しその有効性を 確かめた。さらに,相互換気量が確認されている三室

2 高砂熱学工業(株)総合研究所 〒243-0213 厚木市飯山3150

¹ 北海道大学大学院工学研究科 〒060-8628 札幌市北区北13条西8丁目

Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628, Japan

R&D Centre, Takasago Thermal Engineering Co., Ltd., 3150 liyama, Atsugi, Kanagawa 243-0213, Japan

³ 電機通信大学 〒182-8585 東京都調布市調布ヶ丘1-5-1

University of Electro-Comunication, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

⁴ 北海道ガス(株) 〒060-8530 札幌市中央区大通り西7丁目3-1

Hokkaido Gas Co., Ltd., 3-1 Nishi-7, Odori, Chuo-ku, Sapporo 060-8530, Japan 5 (株) エヌ・ティ・ティファシリティーズ 〒108-0023 東京都港区芝浦3-4-1

NTT Facilities Inc., 3-4-1 Shibaura, Minato-ku, Tokyo 108-0023, Japan

⁶ 藤田保健衛生大学 〒470-1192 愛知県豊明市沓掛町田楽ヶ窪1-98

Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan

モデルでの濃度変化をシミュレーションしたので,報 告する。

ラドンとラドン娘核種濃度の予測シミュレーションプログラムの開発

ここでは、 Rn と RaA (²¹⁸Po)、 RaB (²¹⁴Pb)、 RaC (²¹⁴Bi)の室内における濃度の予測シミュレーションの 結果について述べる。

2.1 ラドンとラドン娘核種の屋内濃度に関する微分方 程式

ラドンとラドン娘核種の原子数濃度の時間変化は次 式のように表される³⁾。

$$\frac{dn_{N}}{dt} = M + \nu n_{NO} - (\lambda_{N} + \nu) n_{N} \qquad \cdots (1)$$

 $\frac{dn_A}{dt} = \boldsymbol{\xi} \boldsymbol{\nu} \boldsymbol{n}_{AO} + \boldsymbol{\lambda}_N \boldsymbol{n}_N - (\boldsymbol{\lambda}_A + \boldsymbol{\nu} + \boldsymbol{\gamma}) \boldsymbol{n}_A \quad \cdots (2)$

$$\frac{dn_{B}}{dt} = \xi \nu n_{BO} + \lambda_{A} n_{A} - (\lambda_{B} + \nu + \gamma) n_{B} \cdots (3)$$

$$\frac{dn_{c}}{dt} = \xi \nu n_{co} + \lambda_{B} n_{B} - (\lambda_{c} + \nu + \gamma) n_{c} \quad \cdots (4)$$

ここで、M:屋内でのRnの発生率(atom/m³h)、 n_x:屋内空気中のRn原子数濃度(atom/m³)、n_A:屋 内空気中のRaA原子数濃度(atom/m³)、n_B:屋内空 気中のRaB原子数濃度(atom/m³)、n_C:屋内空気中 のRaC原子数濃度(atom/m³)、n_C:屋内空気中 のRaC原子数濃度(atom/m³)、n_{x0}:屋外空気中のRaA 原子数濃度(atom/m³)、n_{x0}:屋外空気中のRaA 原子数濃度(atom/m³)、n_{b0}:屋外空気中のRaB原子 数濃度(atom/m³)、n_{c0}:屋外空気中のRaB原子 数濃度(atom/m³)、n_{c0}:屋外空気中のRaC原子数濃 度(atom/m³)、 λ_x :Rnの崩壊(壊変)定数(=0.0075 (/h))、 λ_x :RaAの崩壊定数(=13.63(/h))、 λ_B : RaBの崩壊定数(=1.551(/h))、 λ_c :RaCの崩壊定 数(=2.110(/h))、 ν :換気回数(/h)、*ξ*:給気設

備の漏洩率(-)ⁱ⁼¹, γ : ラドン娘核種の壁や床への 沈着率(/h)。

ラドンは壁や床等への沈着率はないものとして $\gamma=0$ としている。式(1)の右辺第2項および式(2)~式 (4)の右辺第1項は単位時間当たりに室内に侵入する 原子数を表している。また,式(2)~式(4)の右辺第2 項は親核種が室内で崩壊することにより生成する原子 数を表している。

本報では自然放射性物質の放射能濃度を Bq (ベッ クレル)を用いて表している。 Bq (ベックレル)とは 1秒間に1回の崩壊が生じる放射能濃度である。しか し上式では原子数濃度で表現している。そこで原子数 濃度数 n_i (atom/m³)から放射能濃度 Qi (Bq/m³) (i = N, A, B, C)の変換を以下に示す。

放射能濃度=
$$\frac{n_i \times \lambda_i}{3600}$$
 (Bq/m³) …(5)

このようにして得られる連立の常微分方程式を,換 気量や発生量などの情報を与え,濃度を予測するプロ グラムを作成した。連立常微分方程式の解法には Runge-Kutta 法を用いた。これまで, Fortran 版, Basic 版, Mathematica 版を開発した。

2.2 コンピュータプログラムの有効性

本節では、われわれが先に検討したフィルター法^し を用いて行った実測結果とシミュレーション結果を比 較検討し、その有効性を検討する。

室容積102m³,表面積17.3m²をもち,有効開口面 積がほとんどない北海道大学衛生工学実験棟地下室に 機械換気装置を設置し,設定換気回数のもとで,ラド ンとラドン娘核種の放射能濃度の変化を測定した。

一方, Jacobi⁵に従ってラドン娘核種の壁や床への
沈着率 γ (/h)を0.5と考え,開発したコンピュータプ

Fig. 2 Concentrations after mechanical ventilation system turned off. The downward arrow shows the time changing from $\nu = 2.49$ (/h) to $\nu = 0.12$ (/h)).

ログラムを用いて放射能濃度の計算をした#20。

Fig.1は比較的高濃度レベルあった地下室に対して, 機械換気装置により換気回数を増加させた場合の放射 能濃度が減少する過程を示している。この時の換気回 数は実測値に基づき2.49(/h)と与えた。また,発生 量を3400 Bq/m³と与えて計算した。図中の実線はこ れらの値を用いた計算結果である。測定値と比較的一 致しているといえる。

Fig.2は同じ条件のもとで、十分な換気による濃度 の減少が見られた後に換気設備を停止し、その後の蓄 積過程を示している。換気設備停止後の換気回数は実 測により0.12(/h)と与えた。10時間後にはWHO, ASHRAEの基準値²⁰の100(Bq/m³)やEPAの基準値²⁰ 148 Bq/m³を越えており、換気の必要性がシミュレー ション結果からも読みとれる。この場合も計算値は測 定値と比較的一致している。

Fig.3 は Fig.1 と類似したシミュレーションと実測 値の比較である。ここで、測定による初期濃度は Rn, RaA, RaB, RaC それぞれ275, 260, 225, 130 Bq/m³ と高濃度となっていることと機械換気装置による換気

Fig. 3 Concentrations with mechanical ventilation system turned on (ν =3.72 (/h)).

Fig. 4 Concentrations during mechanical ventilation system turned off. The downward arrow shows the time changing from $\nu = 3.72$ (/h) to $\nu = 0.15$ (/h).

回数の実測値が3.72 (/h)となっていることが異なっ ている。また,図中の測定値は平衡仮定ラドン娘核種 (Rn-Dts)濃度であるが,その理由は濃度変化が急激 で非定常性が強く,フィルター法の三回計測法^{#33}の 条件を満たさなかったことによる。平衡仮定ラドン娘 核種(Rn-Dts)濃度は RaB の濃度と近似していること がわかっている⁴¹ので,得られた平衡仮定ラドン娘核 種(Rn-Dts)濃度とシミュレーションによる RaB の濃 度を比較したところ,良く一致している。

Fig.4 はその後換気装置を停止し,設定換気回数 0.15 (/h)の条件下での蓄積過程を示している。これ らの結果も,時刻3~6hの間で多少のずれはあるも ののその後の RaB の蓄積過程を見ると比較的一致し ているといえる。

Fig.5 と Fig.6 は機械換気装置による設定換気回数 を4.15(/h)とさらに増加させたときの除去過程と, 換気装置を停止したあとの設定換気回数0.15(/h)で の蓄積過程を示している。この場合も比較的良く一致 しているといえる。

いずれの結果にも共通していることは、外気が極低

Fig. 5 Concentrations with mechanical ventilation system turned on ($\nu = 4.15$ (/h)).

濃度であることから屋内ラドンとラドン短寿命娘核種 放射能濃度は換気に大きく依存していることである。 他の汚染物質と異なることは、ラドン娘核種の場合、 崩壊(壊変)現象とともに沈着率もある条件下では屋 内濃度に影響することである。すなわち機械換気など により換気回数があるレベル以上ならばその影響はほ とんどないが、設定換気回数が低ければその影響は顕 著であると考えられる^{注0}。また、本測定値と比較し て計算を繰り返すことにより沈着率等の汚染物質の濃 度に影響するファクターのおおよその値を予測するこ とも可能であると思われる。

以上の結果から今回開発したコンピュータプログラ ムは実用に供することを確認できた。これを使用して、 室内における空気汚染物質の蓄積過程や換気による除 去過程の予測が可能であると思われる。寒冷地におけ る冬期には一般に換気回数は減少し、室内の空気環境 の悪化を招く。そこで、室内における汚染物質の蓄積 過程や濃度レベルを予測することにより適切な換気回 数・換気時間を設定し、過剰な換気による室内気温の 低下、ひいては消費エネルギーの増大を抑制すること ができると考えられる。

3.3室における放射能濃度シミュレーション

前節ではいわゆる単室モデルとして放射能濃度を予 測した。実際の建物における濃度を予測する場合は多 数室モデルにおいて室内における汚染物質濃度を予想 することになる。以下には多数室モデルでの計算例を 示す。

多数室の場合には、当該室の換気量が他室との相互 換気気量に影響を受け、場合によっては汚染物質の発 生量が他の部屋における汚染物質の濃度に影響するな どといったことが予想される。ここでは、前節と同様 にラドンおよびその娘核種を対象として同様の手法で 計算を行っている。ラドンおよびその娘核種の放射能 濃度を算出する場合に、前節では4式よりなる連立微 分方程式を解いた。今回は3室を想定しており、計 12式の連立微分方程式を解くことになる。

解析対象とした3室の室容積はそれぞれ24.4 m³(室 1),13.5 m³(室2),12.1 m³(室3)であり,この3室 はすべて隣接している(Fig.7参照)。トレーサーガス 法による通常状態の各室の換気回数は,室1で1.70 (/h),室2で1.87(/h),室3で1.09(/h)である。そ の内訳ともいえる通常状態の相互換気量の測定結果を Fig.8(CASE0)に示す。図中の※は,換気量が1 m³/h 未満の値を表している(以下同様)。

そのような3室に対して, Fig.7に示すように室1 と室2に送風機を設置した。以降,それぞれを送風機 A,送風機Bとする。送風機Aは室1から外(廊下) へ排気し,また送風機Bにより室2の空気は室1へ と運ばれる。これらの送風機の設定風量をCASE1 ~CASE3の3段階に分けて,室間相互換気量をSF。 によるトレーサーガス法により測定した。相互換気量 の測定手順や対象室の測定結果の詳細は,Yokoyama et al. (1997)を参照されたい⁶⁾。送風機A,送風機B

Fig. 7 Schematic diagram for the three zone-model.

Fig. 8 Three-zone air flow rates (m^3/h) (Case 0). Symbol (\circledast) shows the values less than $1 m^3/h$.

Table 1 Air flow rates of Fan A and Fan B

	Fan A	Fan B
Case 1		30m ³ /h
Case 2	150m ³ /h	
Case 3	150m ³ /h	31m ³ /h

の組み合わせによる3段階に設定値をTable1にまと めた。ここでは, Table1に掲げた設定換気量による 換気効果をシミュレートした。

また,各室でのラドン発生率は室1では3400 Bq/m³, 室2で3400 Bq/m³,室3で1500 Bq/m³とした。室1 と室2における発生量は地下室レベル⁷⁷を想定した値 であり高い値となっているが,これは汚染物質の移動 量を明確に示すために意図的に大きな値を採用した。 また,室3における発生量は気密化ブロック造住宅 レベル⁷⁷を想定している。各室における初期濃度は, この発生率で両方の送風機が停止している換気状態の もとでの定常計算により得られた放射能濃度を初期濃 度として与えた(Table 2参照)。

Table	2	Initial	concentrations	(Bq/m^3)	of	radon	and	radon
		daught	ters					

	Rn	RaA	RaB	RaC
Room 1	125	115	57	34
Room 2	108	93	40	20
Room 3	100	95	47	27

Fig. 9 Three-zone air flow rates (m³/h) (Case 1). Symbol (*) shows the values less than 1 m³/h.

(Case 1).

Fig.9は CASE 1 での相互換気量を表しており,こ の場合送風機 B のみの作動となっている。全ての ケースについていえることだが,室2と室3の相互換 気量は壁によって遮られているために相互換気量が極 微小の1 m³/h 未満となっている。 CASE 1 でのシ ミュレーション結果の中から Fig. 10 ~ Fig. 12 に室 1 から室3 までの放射能濃度の変化を示した。30 m³/h

Fig. 11 Simulated results of concentrations for Room 2 (Case 1).

Fig. 12 Simulated results of concentrations for Room 3 (Case 1).

Fig. 13 Three-zone air flow rates (m³/h) (Case 2). Symbol (*) shows the values less than 1 m³/h.

程度の機械換気の吸引側の室2では換気量が減少^{進50} しているため濃度が増加していることがわかる。それ に対して室1と室3では換気の効果が見られる。

CASE 2は CASE1での 30 m³/h レベルの5倍の送風 量を送風機Aに設定した時のシミュレーションであ る。この時の相互換気回数をFig.13に示した。それ に基づく各室の濃度変化の計算結果をFig.14~ Fig.16に示した。このケースでは送風機Aを作動さ せることにより室1が負圧となり、特に室3から空気

Fig. 14 Simulated results of concentrations for Room 1 (Case 2).

(Case 2).

Fig. 16 Simulated results of concentrations for Room 3 (Case 2).

が誘引され直接外に放出されるために,室1に対して だけでなく他室にも効果を及ぼしていると考えられる。 Fig.14~Fig.16のそれぞれは,Fig.10~Fig.12と比 較し,濃度低減のレベルと低減時間が短縮している。 また,送風機Aの風量をさらに増加させることによ り,室1へと誘引される空気量が増加し,さらに大き な換気効果が得られると考えられる。

CASE 3では送風機 A と B の双方を作動させてい

Fig. 17 Three-zone air flow rates (m³/h) (Case 3). Symbol (*) shows the values less than 1 m³/h.

Fig. 18 Simulated results of concentrations for Room 1 (Case 3).

(Case 3).

る。この場合の相互換気量はFig. 17のとおりである。 Fig.18~Fig.19が各室の濃度変化を示している。こ のケースも風量の大きい送風機Aを作動させること により室1が負圧となり,室2と室3から空気が誘引 され直接外に放出されることと,送風機Bの寄与も 加わり,CASE2と比較し,室1と室3で十分な換気 効果が見られる。室2では,他の2室ほどではないが 換気効果の向上が見られる。Fig.18~Fig.19の放射 能濃度の計算結果もそれを反映した形となっている。 また,送風機A,Bの送風量を増加させることによ りさらに高い換気効果が期待され,より短時間で低減 することが予想される。

4. おわりに

わが国の高気密化住宅では条件によってはラドンな らびにラドン短寿命娘核種の放射能濃度が高濃度にな ることをうけて、本報では、1)あらかじめ計画時にラ ドンとラドン娘核種濃度の予測や換気設備の最適運転 管理に有用なコンピュータプログラムを開発した。2) 地下室を対象とした実測値とシミュレーション値を比 較検討し、プログラムの有効性を確かめた。3)相互換 気量が確認されている多数室を対象としたラドンとラ ドン娘核種の放射能濃度のシミュレーション結果を示 した。

われわれは、このようなシミュレーションの援用に よる室内空気環境の予測、あるいは評価を可能とする システムの構築を目標としている。今回対象として 行ったラドンとラドン娘核種の放射能濃度のシミュ レーション結果からも分かるように、屋内空気環境に 大きく影響を与えるのは換気量と汚染物質の発生量で ある。 これに関連して二酸化炭素や一酸化炭素,浮遊粒子 状物質などでは発生源や発生量の同定は比較的容易と 考えられ,シミュレーションが比較的簡単に達成でき ると考えている。一方で,近年問題となっている化学 物質過敏症やシックビル・シンドロームなどと関わり が深いと考えられている VOCs はその発生量の同定に 若干の困難性を伴うことが考えられるが,室内におい て発生する物質やその発生量を多元的に予測すること は空気環境を評価する上で重要な事柄と考えられ,今 後更に努力したい。

謝辞

北海道大学にて本研究を行うにあたりご指導いただ きました落藤澄名誉教授に謝意を表します。また、測 定法とラドン問題の多くの事柄を直接ご指導いただき ました池辺幸正名古屋大学名誉教授にお礼申し上げま す。また、北海道における一連の測定調査にご協力い ただきました皆様と当時北海道大学工学部4年生なら びに工学研究科大学院生の諸君に謝意を表します。

註

註1) ξ :給気設備の漏洩率(-)は空気浄化装置が設置さ れている場合にも対応できるように導入した。そのような 場合,空気浄化装置の捕集率 η (-)の導入の方が一般的で ある。 ξ =1- η になることを付記する。

註2)計算に際しての与条件の中で,換気回数と外気濃度 は実測値に基づき,発生量はパラメータ推定法を基盤にし た推定値を与えたことを付記する。

註3)著者らは先にフィルター法による三回計測法の捕集 時間の短縮化を検討した^{4,57}。その結果,従来の30分や15 分と同程度の精度を保持しながら5分間まで短縮可能なこ とを示した。信頼性のある計測のためには,時間帯での フィルターからの発現の安定性などの条件もあるが,ここ で指している三回計測法の条件とは,捕集時間帯での濃度 の定常性の条件を意味していることを付記する。

註4)式(1)~(4)により,低換気条件での沈着や崩壊(壊 変)現象の影響は,沈着率(Jacobi⁵)に従えば0.5(/h))とラド ン娘核種の崩壊(壊変)定数(最大は RaA の 13.63(/h))との 相対的な関係で決まる。沈着率の影響が顕著になるのは, 換気回数が0.5(/h)以下のレベルと考えられる。

註5) 初期値のもととなった換気状態は送風機設定前の値 であり,送風機設定にあたり,ドアを交換し周囲を目張り したことも換気量減少の要因と考えられる。

文 献

- (荷山真太郎,月館司,青木徹,西願栄二,内見裕聡, 池田耕一,飯田孝夫:北海道における屋内ラドンとラ ドン短寿命娘核種濃度の測定調査,室内環境学会誌,6, 9-17(2003)
- 2)横山真太郎:室内空気質.現代の空気調整工学(落藤 澄編著),朝倉書店,59-85 (1996).
- 3)下道国,加藤隆夫,池辺幸正:屋内空気中のラドンと その娘核種の濃度-換気装置給気側の除塵効率の影響
 –,保健物理,17,119-126 (1982).
- 4)横山真太郎,青木徹,吉岡誠記,月館司,増田正夫, 内見裕聡,下道国:フィルター法による屋内ラドン娘 核種の測定法とその除去指標およびラドン濃度の簡易

同定法に関する研究,空気調和・衛生工学会論文集, (投稿中).

- 5) W. Jacobi: Activity and potential α -energy of 222 radon- and 220 radon-daughters in different air atomospheres, *Health Physics*, 2, 441-450 (1972).
- 6) S. Yokoyama, N. Kakuta, K. Ochifuji, and D. T. Grimsrud: Developing a practical algorithm for multizone air flow rate measurement system and its applications to university facilities, *Proceedings of Health Building / Indoor Air Quality '97*, 2, 557-562 (1997).
- 7) S. Yokoyama and K. Ochifuji: A Study on indoor radon and radon daughter concentrations in Hokkaido of Japan. *Proceedings of Indoor Air* '87, 2, 430-436 (1987).